15 research outputs found

    Sleep-amount differentially affects fear-processing neural circuitry in pediatric anxiety: A preliminary fMRI investigation.

    Get PDF
    Insufficient sleep, as well as the incidence of anxiety disorders, both peak during adolescence. While both conditions present perturbations in fear-processing-related neurocircuitry, it is unknown whether these neurofunctional alterations directly link anxiety and compromised sleep in adolescents. Fourteen anxious adolescents (AAs) and 19 healthy adolescents (HAs) were compared on a measure of sleep amount and neural responses to negatively valenced faces during fMRI. Group differences in neural response to negative faces emerged in the dorsal anterior cingulate cortex (dACC) and the hippocampus. In both regions, correlation of sleep amount with BOLD activation was positive in AAs, but negative in HAs. Follow-up psychophysiological interaction (PPI) analyses indicated positive connectivity between dACC and dorsomedial prefrontal cortex, and between hippocampus and insula. This connectivity was correlated negatively with sleep amount in AAs, but positively in HAs. In conclusion, the presence of clinical anxiety modulated the effects of sleep-amount on neural reactivity to negative faces differently among this group of adolescents, which may contribute to different clinical significance and outcomes of sleep disturbances in healthy adolescents and patients with anxiety disorders

    Disorder-specific and shared brain abnormalities during vigilance in autism and obsessive-compulsive disorder

    Get PDF
    Background Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) are often comorbid and share similarities across some cognitive phenotypes, including certain aspects of attention. However, no functional magnetic resonance imaging (fMRI) studies have compared the underlying neural mechanisms contributing to these shared phenotypes. Methods Age and IQ-matched boys between 11 and 17 years old with ASD (N=20), OCD (N=20) and healthy controls (N = 20) performed a parametrically modulated psychomotor vigilance fMRI task. Brain activation and performance were compared between adolescents with OCD, ASD and controls. Results While boys with ASD and OCD were not impaired on task performance, there was a significant group by attention load interaction in several brain regions. With increasing attention load, left inferior frontal cortex/insula as well as left inferior parietal lobe/pre/post-central gyrus were progressively less activated in OCD boys relative to the other two groups. In addition, OCD boys showed progressively increased activation with increasing attention load in rostromedial prefrontal/anterior cingulate cortex relative to ASD and control boys. Shared neurofunctional abnormalities between ASD and OCD boys included increased activation with increasing attention load in cerebellum and occipital regions, possibly reflecting increased default mode network activation. Conclusions This first fMRI study to compare boys with ASD and OCD showed shared abnormalities in posterior cerebellar-occipital brain regions. However, OCD boys showed a disorder-specific pattern of reduced activation in left inferior frontal and temporo-parietal regions but increased activation of medial frontal regions which may potentially be related to neurobiological mechanisms underlying cognitive and clinical phenotypes of OCD

    Neural dysfunction during temporal discounting in paediatric Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder

    Get PDF
    Both Attention-Deficit/Hyperactivity Disorder (ADHD) and Obsessive-Compulsive Disorder (OCD) are associated with choice impulsivity, i.e. the tendency to prefer smaller immediate rewards over larger delayed rewards. However, the extent to which this impulsivity is mediated by shared or distinct underlying neural mechanisms is unclear. Twenty-six boys with ADHD, 20 boys with OCD and 20 matched controls (aged 12–18) completed an fMRI version of an individually adjusted temporal discounting (TD) task which requires choosing between a variable amount of money now or £100 in one week, one month or one year. Activations to immediate and delayed reward choices were compared between groups using a three-way ANCOVA. ADHD patients had steeper discounting rates on the task relative to controls. OCD patients did not differ from controls or patients with ADHD. Patients with ADHD and OCD showed predominantly shared activation deficits during TD in fronto-striato-insular-cerebellar regions responsible for self-control and temporal foresight, suggesting that choice impulsivity is mediated by overlapping neural dysfunctions in both disorders. OCD patients alone showed dysfunction relative to controls in right orbitofrontal and rostrolateral prefrontal cortex, extending previous findings of abnormalities in these regions in OCD to the domain of choice impulsiveness

    Focusing on Comorbidity A Novel Meta-Analytic Approach and Protocol to Disentangle the Specific Neuroanatomy of Co-occurring Mental Disorders

    Get PDF
    Background: In mental health, comorbidities are the norm rather than the exception. However, current meta-analytic methods for summarizing the neural correlates of mental disorders do not consider comorbidities, reducing them to a source of noise and bias rather than benefitting from their valuable information. Objectives: We describe and validate a novel neuroimaging meta-analytic approach that focuses on comorbidities. In addition, we present the protocol for a meta-analysis of all major mental disorders and their comorbidities. Methods: The novel approach consists of a modification of Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) in which the linear models have no intercept. As in previous SDM meta-analyses, the dependent variable is the brain anatomical difference between patients and controls in a voxel. However, there is no primary disorder, and the independent variables are the percentages of patients with each disorder and each pair of potentially comorbid disorders. We use simulations to validate and provide an example of this novel approach, which correctly disentangled the abnormalities associated with each disorder and comorbidity. We then describe a protocol for conducting the new meta-analysis of all major mental disorders and their comorbidities. Specifically, we will include all voxel-based morphometry (VBM) studies of mental disorders for which a meta-analysis has already been published, including at least 10 studies. We will use the novel approach to analyze all included studies in two separate single linear models, one for children/adolescents and one for adults. Discussion: The novel approach is a valid method to focus on comorbidities. The meta-analysis will yield a comprehensive atlas of the neuroanatomy of all major mental disorders and their comorbidities, which we hope might help develop potential diagnostic and therapeutic tools

    Shared and Disorder-Specific Neurocomputational Mechanisms of Decision-Making in Autism Spectrum Disorder and Obsessive-Compulsive Disorder.

    Get PDF
    Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) often share phenotypes of repetitive behaviors, possibly underpinned by abnormal decision-making. To compare neural correlates underlying decision-making between these disorders, brain activation of boys with ASD (N = 24), OCD (N = 20) and typically developing controls (N = 20) during gambling was compared, and computational modeling compared performance. Patients were unimpaired on number of risky decisions, but modeling showed that both patient groups had lower choice consistency and relied less on reinforcement learning compared to controls. ASD individuals had disorder-specific choice perseverance abnormalities compared to OCD individuals. Neurofunctionally, ASD and OCD boys shared dorsolateral/inferior frontal underactivation compared to controls during decision-making. During outcome anticipation, patients shared underactivation compared to controls in lateral inferior/orbitofrontal cortex and ventral striatum. During reward receipt, ASD boys had disorder-specific enhanced activation in inferior frontal/insular regions relative to OCD boys and controls. Results showed that ASD and OCD individuals shared decision-making strategies that differed from controls to achieve comparable performance to controls. Patients showed shared abnormalities in lateral-(orbito)fronto-striatal reward circuitry, but ASD boys had disorder-specific lateral inferior frontal/insular overactivation, suggesting that shared and disorder-specific mechanisms underpin decision-making in these disorders. Findings provide evidence for shared neurobiological substrates that could serve as possible future biomarkers
    corecore